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Introduction

| have been engaged in Verified Computation and always thought that

@ Methods of verified computation should be tools of analysis of
phenomena,

otherwise they have no future.

Today | will talk about a simple tool for analysis based on verified
computation.
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What is Verified Computation ?

Verification Computation, or Numerical verification methods are
methods on numerical computation in order to prove existence of solutions
of problems and to give error bounds of the solutions with rigorous
estimation of truncation errors and rounding errors.

@ Synonyms : "verified computation”, "verified numerics”, "verification
methods”, "numerical verification”, "numerical methods with
guaranteed accuracy”, "computer assisted proof”, "rigorous
computation” , "rigorous numerics”, ....

The words "validation” or " validated methods” can be used but you
should be careful since they are also used in other areas.
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Interval arithmetic

Interval arithmetic is a basic tool in verified computation.

e For intervals of the form [z] = [z,7] = {z|z <z < T},
]+ [y] = [z +y,7 + 7],
[z] = [yl = [z — 7,7 -y,
[‘T] * [y] = [17 5]7
z = min{zy, 7, Ty, Ty},
z= max{@&, 7, ig, Ty},
[z]/1y] = [z, 2]« [1/7,1/y],
where 0 & [y].

@ Appropriate rounding operations are necessary in order to estimate
rounding errors.

@ Large amount of methods have been developed for interval arithmetic
including methods to compute various functions.

@ Unexpected expansion of resulting intervals may be caused by some
reasons, e.g. Wrapping Effects.
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@ INTLAB - INTerval LABoratory : A multifunctional program package
for interval arithmetic on MATLAB by S.M. Rump
http://www.ti3.tu-harburg.de/rump/intlab/

@ kv - a C++ Library for Verified Numerical Computation : Programs
with affine arithmetic on C++ presented by M. Kashiwagi
http://verifiedby.me/kv/

@ CAPD : A collection of flexible C++ modules with verified numerics
for dynamical systems by the people of Jagiellonian University, Poland
http://capd.ii.uj.edu.pl/

@ MPFI : A library for multi-precision interval arithmetic based on MPFR
by N.Revol, F.Rouillier
http://perso.ens-lyon.fr/nathalie.revol /software.html.

e Arb : A C library for rigorous arithmetic with arbitrary precision
providing a wide range of mathematical functionality by F. Johansson
et al.
http://arblib.orgz
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Verified Computation for Dynamical Systems

@ Dynamical Systems are mathematical models to describe time
development of systems.

@ Theories and methods for Dynamical Systems can be considered as
strong tools for analysis of phenomena.

@ Concepts of Dynamical System includes Equilibria, Fix Points,
Lyapunov functions, bifurcation, and so on...
It seems to follow that

@ Application of Verified Computation to Dynamical Systems
= Contribution of Verified Computation to analysis of phenomena,

and then | have conducted my research from this poin of view.

6 /100



Verified Computation for Dynamical Systems

Indeed there are enormous applications of Verified Computation to
Dynamical Systems[4]. Restricting them to what concern with the authors,
there are

@ Numerical verification of existence of closed orbits in Dynamical
Systems|[8, 9]

@ Construction of local Lyapunov functions around hyperbolic equilibria
with computer assistance[10, 11]

@ Numerical verification method to specify homoclinic orbits as
application of local Lyapunov functions [12]

@ Numerical verification methods to construct local Lyapunov functions
around non-hyperbolic equilibria [13, 14]

and so on.
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Verified Computation for Dynamical Systems

But | have also another impression.

@ People in Dynamical Systems applying Verified Computation to their
own fields are scarcely interested in making tools for analysis of
phenomena.

On the other hand, | have been interested in

@ Numerical verification methods as tools based on Dynamical Systems
for analysis of phenomena, not only for investigation of Dynamical
Systems themselves.

In other words, | want to supply

@ Mathematical tools easy to use for the People engaged in simulation
of phenomena.
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Numerical verification methods for ODE

Lohner method is the most representative among Numerical verification
methods for ODE.

e Lohner method N

@ A numerical verification method for ODE based on Taylor
expansion and its error estimation, which verifies the solution on
each time step point.

@ It has various devices in order to reduce "Wrapping Effect” that
causes expansion of interval radii during interval arithmetic.

N J

On the other hand, Lohner method has no special device for ODEs with
conserved quantities.
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Numerical verification methods for ODE

| have two ideas for this situation.

1 Using methods like Projection method together with Lohner method.
The methods project the solutions to manifolds within which the
conserved quantities are constant, and restrict the domain that Lohner
method gives.

2 Calculating some quantities concerning conserved quantities in order
to obtain the conditions for including or excluding specified solution
orbits in the phase space.
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Numerical verification methods for ODE

The idea 1 is now under developing and will be demonstrated in the future.

The idea 2 is described today with simple examples. Note that this is not
an improved version of Lohner method.

o Verified computation is used only for calculating the conserved
quantities or the quantities concerned.

@ The solution orbits are calculated approximately, not with verified
computation.
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1. Kepler problem

Kepler problem deals with motion of two mass points under universal
gravitation in Newtonian mechanics.

@ Py, P»: mass points with the mass my and mo, respectively
@ ry, ro: the position vectors of each point

@ 7 = ||ra — r1|| where the norm is the 2-norm

The equation of motion:

. Gmlmg

miry = —T(rl — I'Q),
.. Gmims

maYo = —T(TQ - r1)7

where G is the constant of universal gravitation and i etc. mean the
second derivatives with respect to time.
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1. Kepler problem

We put
r:=ry— Iy,
= |r|l,
M :=mq+ mao,
and obtain
GM
P=—-—0r. (1)
r
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Conserved Quantities

The conserved quantities are as follows. For the simplicity, we take the
mass of the mass point as m = 1.

e Total Energy:

» GM
H [
@ Angular Momentum:
J=rxr
@ Eccentricity vector
_(rxJ) r
- GM r

This is also called as Runge-Lenz vector.

14 /100



1. Kepler problem

We know that all the solutions of Kepler problem are quadratic curves.
But rough computation may give orbits with drift as follows:

GM =1, tg =0, tpng = 6400, 2(0) = 7,4(0) = 0,2(0) = 0,5(0) = 0.1,
by ode45 of MATLAB with no option
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1. Kepler problem

We want to show that

@ True solution corresponding to an approximate solution concerned
remains within a finite domain

@ and does not fall into a neighborhood of the origin r =0

without knowing that all the solutions are quadratic curves.

In other words, we want to obtain

@ tools for analysis in order to help the People who are not so familiar to
theoretical results about Kepler problem.
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Including Orbits

Theorem 1
Take a radius Ry > 0 arbitrarily and a sphere

SR1 = {I‘ € R3|T =Ry }

Consider a solution orbit of Kepler problem starting at a point inside the
sphere.
If the total energy E of the solution satisfies

GM

E<-—22 2
<— R (2)

then the whole solution orbit is included within the sphere Sg, .
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Including Orbits

The proof comes from the fact that any solution orbit passes the sphere
Spr, has the energy

This means that if £ > 0 then the solution may go to infinity. That is,

. 2GM
l#l =/ ——
p

implies the escape velocity.
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Note for Exclusion

Note that single use of total energy, or other conserved quantities, can not
exclude solution orbits from a neighborhood of the origin.

Therefore we introduce a new conserved quantity using F and J in the
following way.
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A new conserved quantity

We represent t = (u,v) where
@ v = r is the element corresponding to the direction of the radius
vector,
@ u is the element corresponding to the direction orthogonal to the
radius vector.
Consider the magnitude of Angular Momentum
J =13 =rx &
with

J = ru.

Now we define the conserved quantity F as
F:=E—alJ (3)

with an arbitrary positive constant a.
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A new conserved quantity

Using the definitions of E and J, we have

F:%(v2+u2)—GTM—aJ— L 2+ﬁ(J2—2ar2J) —GTM
%’FZ + 2% (J - ar2)2 - (;a2r2 + Gi%) )
which means
F > Fpin(ria) = — (;a27’2 + Gj”) . (4)

Note that F' = Fj,,;,(7; a) achieves when 7 = 0 and J = ar?.
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Excluding Orbits

Theorem 2

Take a radius Ry > 0 arbitrarily and a sphere
Sgr, = {reR3|r=Ry}.
Consider a solution orbit of Kepler problem starting at a point outside the

sphere.
If the conserved quantity F' of the solution satisfies

F < Fpin(Ro;q) (5)

then whole the solution orbit is excluded from the sphere Sg,.
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Excluding Orbits

The proof comes from the fact that any solution orbit passes the sphere
Sk, has the conserved quantity satisfying

F Z Fmin(RO; CL)
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@ From the above figure, we see that it is necessary for the existence of

Ry satisfying the theorem 2
that the radius r giving F' = F,,,;(7; a) should be larger than the
radius rps giving the supremum of Fi (75 a).

@ This means that F,,;,(r; a) should be decreasing at the radius r
giving F' = Fin(1;0).
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The condition of F' = Fyin(r;a):
=0 and J=ar?

can be interpreted that the constant a should be the angular velocity w
when the solution orbit takes the closest approach to the origin.

.. GM .
Therefore the condition r = \3/ —— to achieve the supremum of
a

Frnin(r;a) gives

o w?r=GM/r?

which means that the centrifugal force is equal to the gravity force.
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Process of Verification

The process of verified computation in order to show the exclusion of the
solution orbit is as follows.

1. Calculate an approximate solution with the initial conditions r(0) and
1(0), and find the closest point to the origin. Let Ry be an
approximation to the distance between the closest point and the
origin. Chose a positive number R satisfying

Ry < Ro.
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Process of Verification

2. Calculate the conserved quantities E, J of the solution with respect to
the initial values, using usual approximate arithmetic.

o E= 4O - S5

o J =r(0)u(0).

Calculate the constant a by

a =

J
R

oN

with approximate arithmetic.

@ Define the function
1 M
Fmin(r;a) — <2a2’f‘2 + GT ) '
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Process of Verification

3. Take interval values [r(0)] and [£(0)] that includes the initial values as
the center with some small radii.
Compute the conserved quantities [E], [J] and [F] = [E] — a [J] for
the interval initial values by using interval arithmetic with verified
computation.

4. Verify that

A

[F] < me(Ro; CL) (6)

holds by verified computation.

If the condition (6) holds, then it is proved that

o All the solution orbits with initial values within the intervals [r(0)] and
[(0)] are excluded from the sphere centered at the origin with the
radius Ry.
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Numerical Example

Parameters for calculating an approximate solution and the closest point:

GM =1, ty =0, tgna = 50,
z(0) = 7,y(0) = 0,#(0) = 0,5(0) = 0.1,
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Numerical Example

From the above figure, we take
Ry = 0.253875850544019, Ry = 0.251523281724059
and calculate the constant a as

a = 11.064751341482040.

The interval initial values are defined as
e z(0)=(7,107°), y(0) =0, ©(0) =0, y(0) = (0.1, 107%),
represented by the center-radius form of intervals.

The results of verified computation are
o [F] = (—7.88318316263335, 0.00157239877214 ),
@ Fin(Ro;a) = (—7.84843810773106, 0.00078559734526 ),
which satisfy the condition (6) [F] < Fynin(Ro; a).
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The approximate orbit and the verified region

@ The blue curve is the approximate orbit. It is drifting because of rough
approximation.

@ The inner region of the red circle excludes the true solution.

@ Note that higher accurate approximation is not used in the process to
specify the red circle.
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Summary up to here

@ We propose numerical verification methods to include and exclude the
solution orbits of Kepler Problem and show an example.

@ For exclusion, we derive a new conserved quantity, which reveals to be
a simple tool for analysis of the calculated orbits of Kepler Problem.

By the way, what the quantity
F=F—-alJ

means in physical sense?
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The circular restricted three-body problem|[17]

The circular restricted three-body problem is a kind of three-body problems
for 3 mass points P;, P, and P3 with their masses m1, ms and mg,
respectively.

Assumptions of the circular restricted three-body problem are

@ m1 >> mgs and mg >> mg3, that means the motion of P5 has no
influence to the motions of P; and P».

@ The mass points P, and P take uniform circular motion around their
centroid with angular velocity w.

Note that the total energy nor the angular momentum cannot be conserved
quantities under these assumptions.
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The circular restricted three-body problem|[17]

The only conserved quantity of the circular restricted three-body problem is
so called The Jacobi Integral, which has a similar form to

F=F—wl.

@ We can also specify an excluding region for the solution orbits of the
circular restricted three-body problem.

@ The excluding region can be specified around equilibria of he circular
restricted three-body problem, so called Lagrangian Equilibrium Points.

@ Analysis using F' by our method has strong relation to the method of
Zero velocity curve which is a standard method of analysis in the
dynamical astronomy field.

@ There are very interesting stories about Trojan Asteroids, Tadpole and
Horseshoe Orbits.
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The circular restricted three-body problem|[17]

BR P, P, PsZEZ. ThZNOEE%Z my, me, mg &I 5,

ri . P h5 Py ANDAIEBNY NL, RES nr

ro P DS Py ADRIEBNT Mle KES 1o

e BR P, P DELZRRAICED, 2IHhSDER P; ODENYT ML
Zr&dde,

BER Py OEEAREN
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2. FIHIBR 3 A&

T, my>>mg DD mg >>m3 & U, BR P; OEHIE Py, P

ICHEZSZ WD ET B,

o COREICLNER Py DIRILF—, AEHEREBICRGFEEL X
BESRBRWT EISERT %,

e BR P & P, FREVOELEAD ZEHEEMEEL TVWEHDET S
(HHIR 3&EE), Z0AEREZ w EBL,

)
{‘l (N

o BM R sidereal system TD P3; ORIBNRY MR r= (£,0,0)7
e B P, P, OERICH S OIEREEZE R synodic system TD P OAE
RONVER: R=(X,Y,2)7
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2. FIHIBR 3 A&

[El¥REERR

A P
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2. FIHIBR 3 A&

CEREIZER TOEHHER :
.. v . T_ 9 T a£ T
R+ 20 (-7, %,0) —w?(X,Y,0) = .
FEDE2EE YA YA, BIEBEOHICHIHELTWS [17],

T
i <dR> EENF CEHET D L

dt
d (1 . 1 dU
—(Z|IR|? - ?|R|? ) = ——
7 (2II I = 5wl ||> 7

o

Lichi> T,
Loy 1
SIRIP - s |RIP+ U
SIIRIT = SwilRY~ +

SEREMBICHA > TERER S,
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YIaE®ES

1
QzéwWRW—U

1 .
F= IR -0 7)

PMREEER D, Iz VIEED &SR,
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YIaE®ES

TIEBDDEERTORER

F = 2+ U~ w (&~ é)

Zhig P, & P, D% 0 [CEXBBER T 75 —RED
F = E — WJ LC—EK?%O

0o CNEZT wF P & P, WNERSICESEDBEOAREICHY L, &

RBTIHMEERICEMN %,

DED, 7S —RBBICRITIZREE F=F —aJ . BFIR3EEEIC
BIT2VTICERPDBEEBMED  ENDHN B,
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YIaE®ES

o I (7) N5 F>-Q TH3,

o 0=1w?|R|?-U(R) >0 FBRORS |R| £HFOBEHTELZND
TREFDOIRZ BV CHBRRTIC I FE L,

UH URBHSRDOEERIFAE D IID,
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YIaE®ES

Theorem 3
E# Oy BERIOEV., ZHREK

Mg, = {R e R*|Q(R) = Qo }
ZEZB,
M4IR 3 RRIEOEEOBNEDRERE F A
F < Q

ZmlcEiE. ZOBPBIZSRIE Mo, EHBRZFLEL,

UTTRZOEBZRBWCETDOFIZTRZ S,
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NOVEE

05V 1DE=ARTER
BLITFTIE Z=0DFETEZ %,

oo HR P & P, Db, MHIRIEEETIIERTH S,

0L42X:(l— )Toy \[7"0

2 mi +m2

0L52X:(l— m2 )’Fo,Y:—?TO

2 mi+me

L4: L5 ‘iH%UBE:B{Z'SFﬂﬁ%E@SF@T}ﬁ—C%D\ AP1P2L4, AP1P2L5 lFEBHIC
F=AkzRd,
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NOVEE

AREDREDKIZH 0.0485 TH D Kf5%Z P, KEZ P, B\WKEKZ P3 &
9 % AR 3 ARHREIC & BN FIRETH %,

o Ly fMHADNKEICIFMOAFEFEOFY > v AIOFEEDZFIDN S

nTtws,
o Ly fhAD/NREICF MO 7SO ~O4 ZRIOREDZRINMT T S
nTwas,

o INSOHINEEIFFESHT ThOVE EFEh, 2012 F 11 BIRAE
T 5425 EHQHER I NTWS,
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NOVEOD/NREDYI2L—>3Y

ROBIE, Ly = (X4, Ya) SEEQNKAEOREDY T2 L— 3V TH B,

RS DBEALFREL, BREIOELIFFETH S,

o my = 1.9891 x 1030 kg. my = 1.898 x 10?7 kg.
w=2m/11.862, 79 = 5.2026

MEAR X =1.011-X,,Y =1.011-Y,

HRE 0

STERFREER 0 < ¢ < 1000

o L, IcHIF3 O =11.38776

o MRELED Oy = 11.3891 : FEDZ - > DEAMIR

& (E MATLAB O oded5 ZAW, A7 3> iF

opts = odeset('abstol’,1e-10, reltol’, 1e-10)
EUT, BREIBBEZ LT TORHRBIEREAEEDLSBWI EIFHERLT

Wd,
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NOVEONREDYI2L—Y 3V
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NOVEOD/NREDYI2L—>3Y

o DK SKBHIEIF Tadpole orbit ( BcF U< LEE) &FIFNT
Wd,

o L, IERITZNERDFILELUC L 2 REMEBITOFERIF. Y IETS
DEBEDORERI 0 THD., LIch'>T Ly IFBARE L HBAAR
EEHFAEW,

o BEDOTAYOAMRIC, Ly ZETHHR LICERY 5/N\XEZE->T Q
DEZBERIEETEI NIE. ERICZ DREED Ly [TIEDHENT
ENEERRATE S1E9,

o INIEBAMD 4 FEIGES,

o BILXUL K UHMELHRDFHEBEZREIT S LIF. TOAETIE
ap AN

o R, HERTRAZARECES EHFEHENLN > TV,
STERREERE 0 <t <t
tond = 5000, 7000, 8000, 8680, 10000, 100000 DEI%E KRS
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NOVEONREDY X 1 L— 3y (REFH)
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NOVEONREDY X 1 L— 3y (REFH)

-4
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NOVEONREDY X 1 L— 3y (REFH)
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NOVEONREDY X 1 L— 3y (REFH)

tend = 8,680

53 /100



NOVEONREDY I 1 L— 3> (REHE)

tend = 10,000

-5 0 5
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NOVEQNKEOY I 2 L—Y 3y (EEH)

tend = 100,000
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-200

-400

-600

-600 -400 -200 0 200 400 600
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CCEXTDFERED

o Y77 —MEDREE F (. AFIR3IFHED T IEBDICHINT 2
ZEMDh T

o VILENZRAWTHRIEDKRFZMFINT S I EH AR

o FFIC., FHEDAFET BELERL, TENREDEBDND,

o REFEN—DUNBWVDT, BHEDEHUIADIEIDIFETIEHE
AN

N EOBTFEE. REDETRHWSNS TEORE/R, ICXB@BITFE
ERBENICALUTHZ EBbh s,
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3. Motion in Schwarzchild Metric

Consider a Schwartzchild Black Hole and let us analyze motion around it
[18].
@ This part is a cooperative research together with H. Hoshino (Waseda
Univ.) and K. Nitta (TDSE Inc.).
Schwarzchild Metric:
dr 2
ds® = (1 — —)dtz ————— +72d6? + r? sin? Ady°.
r 1—rg/r
Since the spacetime in Schwarzchild Metric is spherical symmetry, we take
0 = 7/2 without loss of generality. Hereafter we treat the following.

E) di® +

r

w2:—<y- +r2dg?.

1—rs/r

@ The Event Horizon is a sphere with the radius 74 = 2GM/c? from the
center of the Black Hole, where M is the mass of the Black Hole.

@ We assume that r > 7.
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3. Motion in Schwarzchild Metric

@ Lagrangian :
22

1—rs/r

1 1 .
L = 7mg‘u‘1/~jjul"y = im |:_ (1 - E) (Ct)2 +

5 . + r%?] . (9)

o zt = (ct,r,0,0)
@ The dot symbol " denotes the differential with respect to the proper
time 7 for a mass point, or the affine parameter \ for a photon.

We derive two conserved quantities from the Lagrangian:
E=—-mc? (1 — E)i,
r
J = mr2¢.
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3. Motion in Schwarzchild Metric

Moreover from g,,,@#@" = —kc? we have
22

Ts\ /.42 r 2 72 2

( T (t) +1—rs/r+r¢ ‘

where k = 1 for a mass point and k = 0 for a photon.

From these above we obtain
2.0 _ & 2
mr® = — —km”c
c
Hereafter we consider a mass point and take k = 1. Using r, = 2GM/c?
and divide the both side by 1/(2m), then we have

1 5, & 1 5, J* GMm GJ*M

2 2
2 %—i—kaEcz—i— rsd .
r r

r3

(10)

2" T o T 2™ Topn? r c2r3m
EES E—VS
Namely,
1
§m7‘2 = Es — V. (11)
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Conserved Quantity Eg

Note that
1
Eg = 5m1*2 + Vg > Vg
and
Vs = J? (1_5)_GMm
2mr2 r r
Therefore it follows that
Es > _GMm
T

on the sphere with the radius r > 7.
Consider a sphere with the radius r = R;. If an orbit has its conserved
quantity Es = Eg, which starts from an inner point of the sphere, and

E5<—

1
holds, then the orbit does not go out of the sphere.

This means The Inclusion of solution orbits. 60 /100



Conserved Quantity £

Now we consider a conserved quantity 7 = Eg —a J by a similar manner
in Kepler Problem, and derive its non-dimensional form.

Let

Note that |v] < 1, |u| < 1 as k= 1.
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Conserved Quantity £

Define J by

e _

Ts C

J = pu,

which has no dimension and J = rymc J holds.

Note that Eg can be represented by

Bs = g (4 ()1 - ) 1)
(e herih)

with respect to each point (p, v, u) on the orbit considered.
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Conserved Quantity £

On the analogy of Kepler problem, we suppose that a = ¢(1 — F—S) and
calculate it by the following process.
1. Take a set of initial values p(0), v(0), u(0) for an orbit, and define

J = p(0)u(0).

2. From approximate computation of the orbit, find the closest point to
the Black Hole, and let the value p of the point p = 9. Take a little
bit smaller value o9 < 99, and set Ry = r500.

3. As we have

. 1
b=——1J,
P2 rs
we calculate the constant a by
1 1 -
a=—= O——)J. (13)
Ts Q[) 00
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Conserved Quantity £

From (12), (13) and J = rymcJ, we have

1 5/, 1. ,1, 1 re
== 1— - J—=1—-—-)—-1—-2a—J
F 5MC <v + ( p)+ ,02( p) a-
1 2<2 1. 51 1 1< 1> . )
=—-mc (vV+(1-—")+J" 51 —-——)—-1-25(1—— | JJ|.
2 ( p) pQ( ,0) 0} 00
Then define F' with no dimension by
1 1 1 1 1 A
F:v?+1—+J21——2(1—>{L1 (14)
( p) 02( p) % )
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Conserved Quantity £

For p > 1,

p p 1-1 g
1 2 (1-4)%.
+(1_7)_ pl 4@0 J2
P 1—; 99
1 2 (1-4)7,
> (1 _ 7) _ p - 490 J2 (15)
P 1—; 99
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Conserved Quantity £

Define
_ 152
AO — ( 490) j2
0]

and write the right hand side of (15) by

gk
S0 ==

then f(p) is constant on a sphere with its radius p.

Therefore
@ If an orbit has its conserved quantity F' and an intersection point with
the sphere with the radius p, then

F > f(p) (16)

holds.
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Conserved Quantity £

On the other hand

F < f(p)

holds, then the orbit has no intersection with the sphere.

In case of p = gy, if the condition

1 J?
F<f(@0)—(1—g)(1—?%

)

holds, then the orbit with the quantity F' remains out side of the sphere,
namely it is excluded by the area with the distance Ry = rggog from the
center of the Black Hole.
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Time evolution Equation

The motion equation from the Lagrangian is as follows.

t-direction:
—%ﬁ+(y—5ﬁ:o
r r
r-direction:
2. 2 )
mrs .2 m .. 1 corst Tl .5
= — 2r =0

(l—rs/r)2r2r + 1—rs/rr 2m[ r2 r2(1 —rs/r)? +2r9

¢-direction:

mré + 2m7’“<]5 =0
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Time evolution Equation

In order to solve the motion equation with respect to time, we define
p1=r1/rs, t1 = it )
Then we have a time evolution equation with no dimension as

t.l — t27
pl = P2,
b1 = oo,
; P2
to = ———— 1o,

p1(p1 —1)
) 3 P} Ip1—1,
2= (p —1)¢3 — = -5 t3,
=l D S T, T
: 2
P2 = —2&¢2-

P1
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Time evolution Equation

The initial values of coordinate time ¢ is supposed to be #(0) = 0, £(0) = 1,
then we take our set of initial values as

tﬂmzo,txmzfi
p1(0) = p(0), p2(0) = T—va),
#1(0) =0, oo )_TCS?;EO;

Note that ¢/rs can be regarded as a scale parameter with respect to the
proper time.
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Derivation of Binet Equation

Our problem can be solved by another way. That is, so called Binet
Equation is derived from (10). Define

b=
r

and differentiate b by ¢, then we have
b _

do

which implies m?7? = j2(%)2.

T,

SIE
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Substituting this to (10),

b, & 2 2 2,2 2,3
%) =2 o me — T 4+ m2cPrb 4+ re T2

is obtained Differentiate this again by ¢ and divide the both side by
2724 a5 then the Binet Equation

T*(

3, e
gz~ 2" 272"

is derived.
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Moreover we introduce
Ts

s=—=n14b
r
and then the Binet Equation becomes
2
1;2282—5—1—2(1]2. (17)
with no dimension. From (17) we have ODE system:
d81
% = 52,
(f;; = gsf — 51+ #
The initial values are given by
1 1 v(0)

81(0) = m, 82(0) = —mm
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Verified Computation

Process :

1. As is described above, calculate a solution orbit of the Time Evolution
Equation or Bine Equation using the set of initial values
p(0),v(0),u(0) or corresponding set of s1(0) and s2(0), and find the
closest point to the Black Hole. Set gy from the position of the point,
and chose gg > 1 satisfying

00 < 0o

and define Ry = r50p.
2. From the initial values calculate approximately

A

e J = p(0)u(0),
e Ay,
@ and define
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Verified Computation

3. Consider intervals [p(0)], [v(0)], [u(0)] whose radii are small and

p € [p(0)], (0) € [v(0)], u(0) € [u(0)]

as the centers.
Compute [J] and [F] corresponding [p(0)], [v(0)], [«(0)] by interval
arithmetic with verified computation.

4. Check whether

[F] < f(e0) (18)

holds or not using verified computation.

If the condition (18) holds, then we have proven that
@ All the solution orbits starting from the initial values including the
intervals [p(0)], [v(0)], [u(0)] do not attain the sphere centered at the
Black Hole center with radius Ry.
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Example 1

First we confirm that results of Time Evolution Equation and Binet
Equation coincide in an area far from the Black Hole.

e $(0) =0, ¢(End) =4r
o p(0) = 5000, v(0) = 0, u(0) = 0.008
@ ¢/rs =100, Teng = 40000

The options of ode45 in MATLAB are
Binet : opts = odeset('abstol’,1e-10, reltol’,1e-10);
Time Evolution: opts = odeset('abstol’,1e-20, 'reltol’,1e-20);
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Example 1

Time Evolution :

3000 -
2000 -

1000 -

-1000
-2000 -

-3000 -

L L
-3000 -2000 -1000 0 1000 2000 3000 4000 5000
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Examplel

Binet :

3000 -
2000 -

1000 -

-1000
-2000 -

-3000 -

L L
-3000 -2000 -1000 0 1000 2000 3000 4000 5000
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Example 2

However the two Equations show different results for an area near the
Black Hole.

e ¢(0) =0, ¢(End) = 2w
o p(0) = 500, v(0) = 0, u(0) = 0.008
o ¢/ry =100, Teng = 250
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Example 2

Blue line: Time Evolution  Red line: Binet:
Initially they coincide each other but become different after the turning
point.
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Example 3

Longer time computation gives the following.

Time Evolution:

-100 [
-200 |
-300

-400

-600 -400 -200 o 200 400 600
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Binet :
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Example 4

More closer area to the Black Hole:
e ¢(0) =0, ¢(End) = 467
e p(0)=5,v(0) =0, u(0) =0.3
@ ¢/rs =50, Tepg = 28
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Example 4

Binet :
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Example 5

Which is reliable Time Evolution or Binet 7

In order to check this, we consider the following example:
e ¢(0) =0, ¢(End) = 48w
e p(0) =6, v(0) =0, u(0) =0.31
e ¢/rs =50, Tepg = 50
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Example 5

Blue line: Time Evolution Red line: Binet:
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From the result of Binet Equation, we take gy = 3.792646015975992.

Initial value intervals represented by center-radius form:
e p(0) = <6, 1075 > v(0) =0, u(0) = <0.31, 10_5>

@ We have verified that the exact solution orbits do not come into the
sphere with the radius corresponding to oo = 3.79.

@ On the other hand, we cannot success in verification of the condition
(18) for gp = 3.8.

This implies indirectly that Binet Equation is reliable rather than Time
Evolution Equation.
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Maybe
@ Nonlinearity of the computation gets larger and larger as the orbit
comes to the Black Hole near and near.
@ As Time Evolution Equation has 3 variables, the nonlinearity influence
its computation rather than Binet Equation who has only 1 variable.
@ Actually computation of Ey in Time Evolution Equation w.r.t. the
proper time may have fluctuation.

| feel that we have to use Structure-Preserving Numerical Methods in order
to reduce the fluctuation of E;.

@ Our method has strong relation to so called Effective Potential, which
serves as a standard analytical method for analyzing geodesic orbits.
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BERIEDERH

DERMH
o & (16) T p=gdo ETNIE f(o0) < F MELDIID,
o Ihn&. BELERV £ F < f(oo) 'S, BERHKELT

f(00) < f(eo)

nEs5ND,

B L. 00 1& 09 ICWS S TEBRVMEICERZZEMNTES, LA T
MBI R o) OIKEDLS TBEERV, LHDOREREIF
o f(p) Mp=0p ICEVWTRALTZZ L

ERZX 02>

TH 5o
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AEDHNERM

ZIT [ ZEBEIDE.
, 1 2 1
f(P):W <1p+p2p2(2ﬂ3)A0>
BB, f(p) <0 &
(p—1)°

P 4
P(2p—3) =0

EEETH S,
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BERIEDERH

e RERER T
2p >3

ZIRELTWS,
o T EIFYBMICIE. 3rs/2 UTOHFEDIRORWETIE, fc&EXFE
ROWFERITEEAATVWRL TH, ARMEICED ZEIFTETH
9 E5%, C&EEEKT D,
o fcf2 U, BHEREEIXYERTE R D THERAEDYEEREN+OKE T
niEttHTtE %,

92 /100



BERIEDERH

T T To=00 &ELEET A DEEARZRAL. E5IC p= g I
:\E g~

o 2
<J 19
%0 3 (19)

z1% %,

St (19) 1.
o HE o) DROIMAN S T L BB Z DHOICBE B
T DNEEEEZ B,
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ER

ZOMEICEAL TIE  Innermost stable circular orbit (ISCO) &M EFN 2,
ENHISNTWD, ZNIFEMH

AJ? —12G*m?M? > 0 (20)

ZHmIcTHE T, INH WKL THE 3r, OIROIMAICH D BIETFE
Eh 0 THNIE, KEEREREMUICEX S,

22T
J =rsmeJ,
2GM
s =3
ZAWTERINIE (20) (&
J*>3

ZRIKYT %,
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—F T, THEREZTEE 3r, ODROAMUICH D) oITi g = 3 LEh
EEW, T2 ERE (19) HS

J?>3

5%, INIF ISCO DEHICTFET %,
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E5ICEME (19) B SIE. EX 5Nk J ICHU. BEHINER LR WERE D ¥

FoEmIE
jQwahﬁ—3><@0<j2owwhﬁ—3)

CHDTEDDND, BERICINIELETHDHICIE
J?>3
THRIEFNIER SR,

DFD
o TELERW, IHDEEEDTRIF J =3 TH 5.
o Ffe. TDEE §y=3 EH B,
o EIFBEF4TIE J=15< 3 THolco Lichi> THEN &S
%1 Binet A’IF U LY,

BUEEEAE. (10) OEHBRIG 1SCO £ADEHBR (FHRT>
Y LERWER) CERLBEEAHZEDEBbNnd,  96/100



Conclusion

@ We consider a method of verified computation as a simple example of
tool for analysis of phenomena.

@ Our method is based on a conserved quantity which has a common
form for Kepler Problem, Circular restricted three-body problem, and
Motion in Schwarzchild Metric as

F=F—aJ

@ Using our conserved quantity with verified computation, we have
shown this simple tool is useful in analysis of solutions and checking
reliability of approximate computation concerning.

@ Moreover we can derive some theoretical results from consideration of
conditions of verification, as well as standard analytical methods in
each fields.

| hope that future research of verified computation will develop
tools easy to use for people engaged in analysis of phenomena.
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