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Introduction

• A ∈ Rn×n is nonsingular andB ∈ Rn×n is symmetric positive definite.
• The structuredmatrix is given by

RA−1RT , (1)
where B = RTR.
• This study aims to compute bounds on the spectral norm of the
structuredmatrix:

ρ ≤ ∥RA−1RT∥ ≤ ρ. (2)
• This problem arises in the verified numerical computation of
differential equations.
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Previous Work

• Suppose R is an interval matrix enclosing R.
• R can be computed via interval Cholesky decomposition (e.g., the
verchol function in VERSOFT1).
• Using INTLAB/MATLAB2, we can compute an enclosure of
ρ = ∥RA−1RT∥ as follows:

X = A\R'; (3)
Y = R * X; (4)
rho = norm(Y); (5)

1G. Alefeld, G. Mayer, ”The Cholesky method for interval data”, Linear Algebra and its
Applications, Vol. 194, 1993.
2S. M. Rump, ”INTLAB ‑ INTerval LABoratory”, in: T. Csendes (Ed.), Developments in Reliable
Computing, Kluwer Academic Publishers, Dordrecht, 1999, pp. 77–104 2



Proposed Method



Outline of the Proposed Method

• The proposedmethod considers the inverse of the structured
matrix, defined as

S := R−TAR−1. (6)
• Let σi be the ith largest singular value of S. We propose a method to
verify σi:

σi ≤ σi ≤ σi, i = 1, 2, . . . , n. (7)
• If an enclosure for σ1 is obtained and 0 < σ1 holds, then:

1

σ1

≤ ∥RA−1RT∥ ≤ 1

σ1

. (8)
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Variant Singular Value Decomposition

• Let A and B be givenmatrices.
• We consider the decomposition

UTAV = Σ, (9)
UTBU = V TBV = I, (10)

where I is the identity matrix, and Σ is a diagonal matrix with
nonnegative entries satisfying

Σ11 ≥ Σ22 ≥ · · · ≥ Σnn ≥ 0. (11)

• Then, we have Σii = σi for all i.
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Variant Singular Value Decomposition

• Let Û , V̂ , and Σ̂ be approximations of U , V , and Σ, respectively.
• We expect the following approximations to hold:

ÛTAV̂ ≈ Σ̂, (12)
ÛTBÛ ≈ V̂ TBV̂ ≈ I. (13)

• Û , V̂ , and Σ̂ can be computed using the following MATLAB code:
R = chol(B); (14)
[U, S, V] = svd(R'\A / R); (15)
U = R\U; V = R\V; (16)

• Next, we present a verification method for the diagonal elements of
Σ.
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Verification Theory

• Define
α := ∥ÛTBÛ − I∥, (17)
β := ∥V̂ TBV̂ − I∥, (18)
γ := ∥ÛTAV̂ − Σ̂∥. (19)

• If α, β < 1, then the following inequality holds:
(Σ̂)ii − γ√

(1 + α)(1 + β)
≤ σi(S) ≤

(Σ̂)ii + γ√
(1− α)(1− β)

. (20)

• If (Σ̂)nn > γ, we obtain the following enclosure for ρ = ∥RA−1RT∥:√
(1− α)(1− β)

(Σ̂)nn + γ
≤ ρ ≤

√
(1 + α)(1 + β)

(Σ̂)nn − γ
. (21)
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For Complex Matrices

• Consider complex matrices A,B ∈ Cn×n. We define their real
representations as

Ar :=

(
Re(A) −Im(A)

Im(A) Re(A)

)
, (22)

Br :=

(
Re(B) −Im(B)

Im(B) Re(B)

)
. (23)

• If Br = RT
r Rr, then the following relation holds:

σn(R
−TAR−1) = σ2n(R

−T
r ArR

−1
r ). (24)
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Summary of SVD‑Based Method

• The proposedmethod does not require interval Cholesky
decomposition.
• As a result, the proposedmethod achieves high numerical stability
and computational efficiency.
• However, even if A and B are sparse, the computedmatrices Û and
V̂ tend to be dense.
• To address this issue, we propose a verification method that does
not rely on singular value decomposition.
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For sparsematrices



Sylvester’s Law of Inertia

• Consider a symmetric matrix A and a nonsingular matrix L.
• Then, A and STAS have the same inertia, meaning that they have
the same number of negative, zero, and positive eigenvalues.
• Moreover, a symmetric matrix A can be factorized as

A = LDLT , (25)
where L is unit lower triangular andD is diagonal.
• A andD have the same inertia.
• Based on this theorem, N. Yamamoto proposed an efficient and
simple verification method for the eigenvalue problem. 3

3N. Yamamoto: A simple method for error bounds of eigenvalues of symmetric matrices, Linear
Alg. Appl., 324 (2001), 227–234.
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Verification for Symmetric Eigenvalue Problem

• Let A ∈ Rn×n be a given symmetric matrix (A = AT ).
• Let λmin denote the smallest eigenvalue of A in absolute value.
• For α1, α2 satisfying α1 < α2, assume that

A+ α1I ≈ L̂1D̂1L̂
T
1 , δ1 = ∥A+ α1I − L̂1D̂1L̂

T
1 ∥, (26)

A+ α2I ≈ L̂2D̂2L̂
T
2 , δ2 = ∥A+ α2I − L̂2D̂2L̂

T
2 ∥. (27)

• If D̂1, D̂2, and A have the same inertia, then:
λmin ≥ min(|α1| − δ1, |α2| − δ2). (28)

• Conversely, if D̂i (i ∈ {1, 2}) and A do not have the same inertia,
then:

λmin ≤ |αi|+ δi. (29)
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Augmented Matrix

• For a square matrix A, consider the augmentedmatrix:

Ā =

(
O AT

A O

)
. (30)

• Let λi(Ā) be the eigenvalues of Ā, and let σi(A) be the singular
values of A.
• Then, the following relation holds:

{λi(Ā) | 1 ≤ i ≤ 2n} = {±σj(A) | 1 ≤ j ≤ n}. (31)

• The inertia of Ā is (n, 0, n) for nonsingular A.
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Verification for Generalized Eigenvalue Problem

• Define

Ā =

(
O AT

A O

)
, B̄ =

(
B O

O B

)
. (32)

• The matrix Ā is symmetric, and B̄ is symmetric positive definite.
• For the generalized eigenvalue problem Āxi = λiB̄xi, we have the
following relation:

{λi}1≤i≤2n = {±σj}1≤j≤n, (33)

where σj denotes the singular values of R−TAR−1.
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Proposed Method

• Consider

G(θ) =

(
θB AT

A θB

)
≈ L̂D̂L̂T . (34)

• If the inertia ofG(θ) is (n, 0, n), then we have:
σn ≥ |θ| − ∥G(θ)− L̂D̂L̂T∥. (35)

• This follows from the factorization:(
θB AT

A θB

)
=

(
RT O

O RT

)(
θI (R−TAR−1)T

R−TAR−1 θI

)(
R O

O R

)
. (36)
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Numerical results
(randommatrices)



Computer environment

• CPU: Intel Xeon Platinum 8490H (60 cores, 1.90 GHz ‑
3.50 GHz) × 2 sockets
• Memory: 512 GiB
• Software: MATLAB 2024a, INTLAB V13, VERSOFT
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Numerical experiment

表 1: Comparison of relative errors and elapsed times [sec] of the verificationmethods

Relative error of ρ Elapsed times [sec]
n Previous Proposed Previous Proposed Speedup
2,500 5.12e‑06 3.85e‑07 26.46 1.34 18.80
5,000 5.13e‑06 3.80e‑06 202.33 7.44 24.93
10,000 5.13e‑06 4.54e‑06 3,285.43 45.48 48.20
20,000 5.13e‑06 4.84e‑05 26,964.60 237.38 65.79

• A = randn(n); C = randn(n); B = n ∗ eye(n) + (C+ C′) ∗ 0.5;
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Numerical experiment

表 2: Comparison of relative errors of the verification methods (n = 1000)

Relative error of ρ
κ2(B) Previous Proposed
101 2.11e‑02 5.26e‑08
103 failed 3.14e‑07
106 failed 4.69e‑04
109 failed 1.15e‑01
1012 failed inf

• A = randn(n); B = gallery(′randsvd′, n,−cnd, 3, n− 1, n− 1, 1);

16



Numerical experiment

表 3: Comparison of the relative errors of the verification methods (n = 1000)

Relative error of σ−1
min

κ2(A) Previous Proposed
101 5.34e‑06 7.71e‑11
103 5.22e‑06 4.09e‑09
106 5.17e‑06 2.87e‑06
109 5.16e‑06 2.34e‑03
1012 1.34e‑05 inf

• A = gallery(′randsvd′, n, cnd, mode, n− 1, n− 1, 1);

• C = randn(n); B = n ∗ eye(n) + (C+ C′) ∗ 0.5;
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Numerical results
(sparsematrices)



Finite Element Approximation for an Elliptic Operator

• Consider a convex bounded polygonal domain Ω ⊂ Rd (d = 1, 2).
• Define the Sobolev spaceH1

0 (Ω) := {u ∈ H1(Ω) | u = 0 on ∂Ω}.
• Define the linear elliptic operator:

L u := −∆u+ b · ∇u+ cu : H2(Ω) ∩H1
0 (Ω) → L2(Ω) (37)

for b ∈ L∞(Ω)d, c ∈ L∞(Ω).
• The invertibility and norm bound ofL −1 are crucial for
computer‑assisted proofs.

Takeshi Terao, Yoshitaka Watanabe, and Katsuhisa Ozaki.“Verified error bounds for
the singular values of structuredmatrices with applications to computer‑assisted
proofs for differential equations.” arXiv preprint arXiv:2502.09984 (2025).
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Finite Element Approximation

• Let Sh be a finite element subspace ofH1
0 (Ω)with basis functions

ϕii = 1N , whereN = dimSh.
• DefineN ×N matrices A and B:

[A]ij = (∇ϕj,∇ϕi)L2 + (b · ∇ϕj + cϕj, ϕi)L2 , [B]ij = (∇ϕj,∇ϕi)L2 .

(38)

• The matrix B is positive definite.

• Results for (R, c) = (5,−15) and (R, c) = (6.75,−1− 1.5i) from a
convection‑diffusion equation.
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Numerical experiment

表 4: Upper bounds of σ−1
min and the computation times of the verification methods.

The matrices are real.

Upper bounds σ−1
min Elapsed times [sec]

n Previous SVD LDLT Previous SVD LDLT

841 4.1234 4.1233 4.1233 6.79 0.98 1.08
9,801 4.1555 4.1555 4.1555 298.92 100.94 0.98
89,401 ‑ ‑ 4.1625 ‑ ‑ 10.65
998,001 ‑ ‑ 4.1628 ‑ ‑ 1408.68
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Numerical experiment

表 5: Upper bounds of σ−1
min and the computation times of the verification methods.

The matrices are complex.

Upper bounds σ−1
min Elapsed times [sec]

n Previous SVD LDLT Previous SVD LDLT

841 1.0496 1.0495 1.0496 29.65 4.28 1.12
9,801 1.0497 1.0497 1.0497 983.32 339.53 3.08
89,401 ‑ ‑ 1.0497 ‑ ‑ 46.79
998,001 ‑ ‑ 1.0500 ‑ ‑ 2340.33
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Summary

• We proposed two verification methods.
• Compared to previous studies, the proposedmethod does not use interval
Cholesky decomposition, which improves numerical stability.
• The SVD‑basedmethod is highly numerically stable, but difficult to apply
to large‑scale problems.
• The LDLT ‑basedmethod has some numerical stability issues but is
potentially applicable to large‑scale sparse matrices.
• However, equilibration can potentially mitigate the numerical instability
of the LDLT decomposition.
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