
Verified solutions of sparse linear systems

Takeshi Ogita
Division of Mathematical Sciences

Tokyo Woman’s Christian University

Japan

joint work with

Shin’ichi Oishi and Siegfried M. Rump

SCAN2012, Novosibirsk

September 26, 2012

1 / 50



Outline

F: a set of fixed precision floating-point numbers, e.g., IEEE 754 binary64

Let us consider Ax = b where A ∈ Fn×n, b ∈ Fn.

Task By the use of floating-point arithmetic (with intervals),

we aim to

• prove A is nonsingular, and

• compute a forward error bound of an approximate solution x̃ of Ax = b

s.t.

|(A−1b)i − x̃i| ≤ εi for 1 ≤ i ≤ n.

2 / 50



Brief assumptions and conditions

• The matrix A is large, sparse and moderately ill-conditioned.

• The verification process should be as fast as possible.

• Obtained error bounds should be tight (meaningful).

⇓
Some information on A−1 is necessary. (To estimate ‖A−1‖ is essential.)

⇓

One of the Grand Challenges in Interval Analysis

[1] A. Neumaier: Grand Challenges and Scientific Standards in Interval

Analysis, Reliable Computing, 8 (2002), 313–320.

“Apart from a paper by Rump, nothing bas been done on the interval side.”

3 / 50



Notation

• For x = (x1, x2, . . . , xn)T ∈ Rn

|x| = (|x1|, |x2|, . . . , |xn|)T ∈ Rn

‖x‖∞ = max
1≤i≤n

|xi|

• For A = (aij) ∈ Rm×n

|A| = (|aij|) ∈ Rm×n

‖A‖2 =
√
ρ(ATA) =

√
λmax(ATA)

‖A‖∞ = max
1≤i≤m

∑
1≤j≤n

|aij|

4 / 50



• For A = (aij), B = (bij) ∈ Rm×n

A ≤ B ⇐⇒ aij ≤ bij for all (i, j)

• o: zero vector

• e: vector of all ones

• O: matrix of all zeros

• I: identity matrix

• u: rounding error unit (unit round-off), u ≈ 10−16 in IEEE 754 binary64

• κ(A) = ‖A‖ · ‖A−1‖: condition number

5 / 50



Difficult points for sparse matrices

For dense linear systems there are several efficient methods for this

purpose (e.g. by Rump (1980), Oishi-Rump (2002), Hansen-Bliek-Rohn-

Ning-Kearfott ([Neumaier] 1999)).

• Common basis: use of an approximate full inverse of either A or its

LU factors.

• Cost: comparable with a standard numerical algorithm, Gaussian

elimination with partial pivoting.

• Applicability: κ(A) . 1/u ∼ 1016 in binary64.

• Model implementation: verifylss in INTLAB, a Matlab toolbox for

reliable computing.

6 / 50



For sparse cases things are much different: Still difficult in terms of both

computational complexity and memory requirements.

• Difficulty: destruction of the sparsity of A if using full inverses.

• Exception: diagonally dominant and M -matrix or alike.

7 / 50



0 10 20 30 40

0

10

20

30

40

nnz(A) = 400

A (n = 48)

0 10 20 30 40

0

10

20

30

40

nnz(A−1 ) = 2304 = 482

A−1

Figure 1: Destruction of sparsity of A (n = 48).

8 / 50



Figure 2: Destruction of sparsity of A (n = 1600).

9 / 50



More precisely Prof. Rump formulated the following challenge:
� �
Derive a verification algorithm which computes an inclusion of the

solution of a linear system with a general symmetric sparse matrix

of dimension 10000 with condition number 1010 in IEEE 754 double

precision, and which is no more than 10 times slower than the best

numerical algorithm for that problem.� �
[2] S. M. Rump: Verification methods: Rigorous results using floating-

point arithmetic, Acta Numerica, 19 (2010), 287–449.

• κ(ATA) = κ(A)2

• Treatable range in fl-pt: κ(A) . u−1 ≈ 1016 in binary64

• If κ(A) is small, then a super-fast verification method for s.p.d. matrices

(to be explained) can be used after calculating ATA.

10 / 50



In this talk we aim to do the following things:

1. survey existing verification methods for sparse linear systems.

• monotone (including M-matrix) [e.g. heat equation]

• H-matrix [e.g. fluid dynamics, electromagnetics]

• symmetric and positive definite [e.g. structure analysis]

• general symmetric

2. try to partially solve the problem for general symmetric matrices:

• A is large, e.g. n ≥ 10000, and sparse.

• A is moderately ill-conditioned, e.g.
√

u−1 < κ(A) < u−1.

11 / 50



Basic principles of verified numerical computations

1. Utilize results by standard (non-interval) numerical algorithms with pure

floating-point arithmetic as much as possible.

• Quality of such results are usually good.

• There are many fast and reliable (but not verified) numerical libraries

such as BLAS/LAPACK and sparse routines.

2. Use interval arithmetic only if absolutely necessary.

• To avoid slowing down computational speed.

• To avoid explosions of interval width.

=⇒ Leave the use of interval arithmetic as late as possible. [Wilkinson]

12 / 50



Current status of fast verified solutions of linear systems

dense direct general Rump (1980), Oishi-Rump (2002)

solver s.p.d. Rump (1993), Rump-Ogita (2007)

H-matrix Ning-Kearfott (1997)

sparse direct general Rump (1994)

solver s.p.d. Rump (1993), Rump-Ogita (2007)

symmetric Rump (1995)

any

strictly
diagonally
dominant (trivial)

(including monotone∗ Ogita-Oishi-Ushiro (2001)

iterative H-matrix Ogita-Oishi (2006)

solver) TN matrix similar to monotone

others –

∗) It is not trivial to determine whether a give matrix is monotone.

13 / 50



Dense matrices (for reference)

14 / 50



Verification methods for dense matrices:
(1) Krawczyk-Rump

Theorem (Rump, 1980)� �
Let A ∈ Rn×n, R ∈ Rn×n, b ∈ Rn and x̃ ∈ Rn be given. Let [ε] ∈ IRn

be closed and bounded with [ε] 6= ∅. Let int([ε]) denote the interior of

[ε]. If

[y] := R(b−Ax̃) + (I −RA)[ε] ⊆ int([ε]),

then A is nonsingular and

A−1b ∈ x̃+ [y].� �
The 1st stage of INTLAB’s verifylss for dense linear (interval) systems.

15 / 50



Verification methods for dense matrices:
(2) Hansen-Bliek-Rohn-Ning-Kearfott

Theorem (Ning-Kearfott, 1997)� �
Let an H-matrix A ∈ Rn×n and b ∈ Rn be given. Let y, z ∈ Rn be

defined by y := M(A)−1|b| and zi := [M(A)−1]ii. Let p, q ∈ Rn be

defined by pi := [M(A)]ii − zi and qi := yi/zi − |bi|. Then A−1b ∈ [x]
where

[xi] :=
bi + [−qi, qi]
Aii + [−pi, pi]

.

� �

• The 2nd stage of verifylss for dense linear (interval) systems.

• The results may be of better quality than those of the Rump’s approach

for ill-conditioned linear systems; normally the quality is similar.

16 / 50



Verification methods for dense matrices:
(3) Yamamoto

Theorem (Yamamoto, 1984)� �
Let A,R ∈ Rn×n and b ∈ Rn.

If ‖I −RA‖∞ < 1, then

|A−1b− x̃| ≤ |R(b−Ax̃)| + ‖R(b−Ax̃)‖∞
1 − ‖I −RA‖∞

|I −RA|e.
� �

• It is easy to implement the method.

• The results are usually as good as those of the Rump’s approach.

17 / 50



Verification methods for dense matrices:
(4) Oishi-Rump

Key estimation: ‖I −RA‖∞
1. PA ≈ LU . [23n

3 flops]

2. XL ≈ L−1 and XU ≈ U−1. [23n
3 flops in total]

3. R := XUXLP (not explicitly compute it).

4. Use a priori error bounds by backward error analysis.

Evaluation in O(n2) flops:

‖I −RA‖∞ ≤ c1u‖|XU |(|XL|(|L|(|U |e)))‖∞ + c2u,

where c1, c2 are some computable factors and u is the underflow unit.

• The same computational effort for calculating an approximate solution.

18 / 50



Sparse matrices

19 / 50



Verification methods for sparse matrices:
strictly diagonally dominant

Suppose A = (aij) ∈ Rn×n is strictly (row) diagonally dominant.

Let D := diag(a11, . . . , ann) and Ã := A−D.

Setting R := D−1 = diag(a−1
11 , . . . , a

−1
nn) yields

‖I −RA‖∞ = ‖I −D−1A‖∞ = ‖D−1Ã‖∞ < 1,

since
∑

j 6=i |aij| < |aii| for all i.

20 / 50



Verification methods for sparse matrices:
monotone (including M-matrix)

monotone = inverse nonnegative

Definition 1. [monotone] A matrix A ∈ Rn×n is called monotone if

Av ≥ o for v ∈ Rn implies v ≥ o.

Lemma 2. A is monotone if and only if A is nonsingular with A−1 ≥ O.

Definition 3. [M-matrix] Let A = (aij) ∈ Rn×n with aii > 0 and

aij ≤ 0 for i 6= j. Then A is called an M-matrix if A is nonsingular and

A−1 ≥ O.

21 / 50



Theorem (Ogita-Oishi-Ushiro, 2001)� �
Let A ∈ Rn×n with A being monotone and b, ỹ ∈ Rn.

If ‖e −Aỹ‖∞ < 1, then

‖A−1‖∞ ≤ ‖ỹ‖∞
1 − ‖e −Aỹ‖∞

.

� �

• To solve Ay = e, the same solver for solving Ax = b can be applied.

• ‖e −Aỹ‖∞ < 1 is suited as a stopping criterion for iterative solvers.

• It is not trivial to determine whether A is monotone.

22 / 50



Proof of the theorem for monotone matrices

Since A−1 ≥ O, we have

‖A−1‖∞ = ‖|A−1|e‖∞ = ‖A−1e‖∞
≤ ‖A−1e− ỹ‖∞ + ‖ỹ‖∞
≤ ‖A−1‖∞‖e−Aỹ‖∞ + ‖ỹ‖∞.

This yields

(1 − ‖e−Aỹ‖∞)‖A−1‖∞ ≤ ‖ỹ‖∞.
If ‖e−Aỹ‖∞ < 1, then

‖A−1‖∞ ≤ ‖ỹ‖∞
1 − ‖e−Aỹ‖∞

. �

23 / 50



Numerical results (1)

• A, b: from discretizing 2-D Poisson’s equation by FEM

• The problem size n is varied from 10, 000 to 250, 000.

• Solver: MICCG method

– stopping criteria:
‖b−Ax̃‖2

‖b‖2
≤ 10−12, ‖e−Aỹ‖∞ ≤ 10−3

24 / 50



�

2

�

3




(h : un
hosen; T

1

= 0)

10

y

x

: k

1

= 1:0; f

1

= 0

: k

2

= 0:1; f

2

= 0

: k

3

= 1:0; f

3

= 20

� =

�

4

52 2 1


div{−k · grad(u)} = f in Ω
{−k · grad(u)} × n = 0 on Γ2

{−k · grad(u)} × n = h(u− T∞) on Γ3

25 / 50



Table 1: Computing time and relative error bound ‖A−1b−x̃‖∞/‖A−1b‖∞
dim(A) (n) approx. solution [s] verification [s] rel. error bound

10,000 3.3 1.7 4.1 × 10−10

40,000 27.1 10.2 2.5 × 10−9

90,000 90.7 32.3 7.1 × 10−9

160,000 216.2 77.0 1.6 × 10−8

250,000 458.5 146.8 3.3 × 10−8

Intel Celeron 566MHz CPU [Computing, Suppl. 15 (2001)]

Verification process can be faster than approximation one!

26 / 50



Verification methods for sparse matrices:
H-matrix

For A = (aij) ∈ Rn×n, the comparison matrix M(A) = (âij) of A is

defined as

âij =
{

|aij| (i = j)
−|aij| (i 6= j)

.

Definition 4. [H-matrix] A is called an H-matrix if M(A) is an M-

matrix.

Lemma 5. A is an H-matrix if and only if there exists a vector v > o
such that M(A)v > o.

Lemma 6. If A is an H-matrix, then |A−1| ≤ M(A)−1.

From Lemma 6, it follows that

‖A−1‖∞ ≤ ‖M(A)−1‖∞.

27 / 50



How to determine whether A is an H-matrix?

Suppose we do not know whether A is an H-matrix.

Put Â := M(A). (At least Â is an L-matrix for any A with nonzero

diagonals; âij > 0 for i = j (âii > 0) and âij ≤ 0 for i 6= j.)

There are some possibilities:

1. Use an approximation ṽ of the eigenvector corresponding to the minimum

eigenvalue of Â (that is the Perron vector of Â−1 if A is an H-matrix)

[Rump, 2012], or

2. Use an approximate solution of Âv = e. [Neumaier, 1999]

⇒ ‖e − Âṽ‖∞ < 1 implies Âṽ > o.

28 / 50



Verification methods for sparse matrices:
another approach

For symmetric A
λi(A): eigenvalues of A

‖A−1‖2 =
1

min |λi(A)|

For non-symmetric A
σi(A): singular values of A ( =

√
λi(ATA))

‖A−1‖2 =
1

minσi(A)

29 / 50



Verification methods for sparse matrices:
symmetric and positive definite

Rump’s algorithm

1. Set α := ψu · tr(A). (ψ: computable)

2. Execute a Cholesky factorization for A− 2αI ≈ LLT .

3. If succeeded, then λmin ≥ α.

� �
An a priori error estimate by a backward error analysis:

‖LLT − (A− 2αI)‖2 ≤ ψu · tr(A− 2αI) ≤ ψu · tr(A) = α� �
=⇒ INTLAB function: verifylss, isspd

30 / 50



Property

• Only one fl-pt Cholesky factorization chol(A− 2αI) is nesessary.

(Direct sparse solvers can be used.) Super-fast!

• If chol(A − 2αI) runs to completion, then it is verified that “A is

positive definite”. (and λmin(A) ≥ α > 0)

(It is verified rigorously.)

• Even if chol(A − 2αI) failed, it is not verified that “A is not positive

definite”.

(A may be positive definite, although it is unlikely.)

31 / 50



Numerical results (2)

Test matrices: University of Florida Sparse Matrix Collection

Computer environment:

CPU: Intel Dual-Core Xeon 2.80GHz × 4 processors

Memory: 32GB

OS: Red Hat Enterprise Linux WS

Software: Matlab Version 7.1.0.183 (R14) Service Pack 3

name n bw w/wo RCM time (sec)

ship 003 121,728 3659/3659 260

shipsec1 140,874 5238/5238 538

cfd2 123,440 2179/4333 127

af shell(3,4,7,8) 504,855 2470/4909 633

apache2 715,176 2993/65837 1176

32 / 50



Verification methods for sparse matrices:
general symmetric

Rump’s algorithm

1. Estimate the smallest magnitude eigenvalue (denoted by τ̃1).

2. Set α := 0.9 · |τ̃1|.
3. Execute an LDLT factorization for A− αI ≈ L1D1L

T
1 .

4. Compute β1 ≥ ‖L1D1L
T
1 − (A− αI)‖2.

5. Check the inertia of D1.

6. Execute an LDLT factorization for A+ αI ≈ L2D2L
T
2 .

7. Compute β2 ≥ ‖L2D2L
T
2 − (A+ αI)‖2.

8. Check the inertia of D2.

9. Compute a lower bound of min |λi(A)|: σ ≥ α− max{β1, β2}.

=⇒ a little unstable: κ(A) ≤ κ(A± αI)

33 / 50



�

je�

1

j

R

0

�

1

�

1

��

�

2

��

2

at least n

2

eigenvalues at least n

1

eigenvalues

�je�

1

j

�

Figure 3: Lower bound of the smallest magnitude eigenvalue

A similar approach for bounding eigenvalues can be found in

[3] N. Yamamoto: A simple method for error bounds of eigenvalues of

symmetric matrices, Linear Alg. Appl., 324 (2001), 227–234.

34 / 50



Verification methods for sparse matrices:
non-symmetric

The following three approaches are known (Rump):

1. B = ATA and apply the super-fast method for s.p.d. matrices.

2. A = LDMT ⇒ σ1(A) ≥ σ1(L) · σ1(D) · σ1(M).

• In practice, A = L̃D̃M̃T + ∆ (due to rounding errors) and

σ1(A) ≥ σ1(L̃) · σ1(D̃) · σ1(M̃) − ‖∆‖2.

3. G :=
[
O AT

A O

]
and apply any method for symmetric matrices to G.

• {λi(G), 1 ≤ i ≤ 2n} = {±σj(A), 1 ≤ j ≤ n}. ⇒ κ(G) = κ(A)
• For small α, an LDLT factorization for G− αI is a little unstable.

35 / 50



A new approach for sparse matrices

36 / 50



Lower bound of the smallest singular value

• Present status: Few methods of obtaining σ ≤ σ1(A) are known

except some methods by Rump based on LDLT factorization.

• Special case: A super-fast verification method for SPD matrices by

Rump using Cholesky factorization.

– applicable up to κ(A) ∼ u−1/ψ where ψ := max
i

nnz(L(i, :)) for a

Cholesky factor L.

• Suboptimal approach: use of ATA or AAT .

– An obvious drawback: it squares the condition number of A, so that

applicable up to κ(A) ∼ 1/
√

u ∼ 108.

37 / 50



Preliminaries

� �
Theorem 7. [eigenvalue perturbation] Let A and B be real

symmetric n× n matrices. Then it holds for i = 1, 2, . . . , n

|λi(A) − λi(B)| ≤ ‖A−B‖2.� �
� �
Theorem 8. Let A = AT ∈ Rn×n. For some α ∈ R, suppose

A− αI = XDXT

where X is some nonsingular matrix and D ∈ Rn×n. Then the inertia

of D is equivalent to a triplet of the number of eigenvalues of A which

are larger than, smaller than or equal to α.� �
38 / 50



� �
Theorem 9. [Lehmann bounds] Let A = AT ∈ Rn×n. Let λi, 1 ≤
i ≤ n, be eigenvalues of A with

λ1 ≤ · · · ≤ λn.

Suppose ν ∈ R satisfies λk < ν ≤ λk+1 for some k. Let X be a real n×k
matrix of full rank. Put A1 = XTX, A2 = XTAX, A3 = XTA2X,

B1 = νA1 − A2 and B2 = ν2A1 − 2νA2 + A3. Let µj, 1 ≤ j ≤ k, be

generalized eigenvalues of (B1, B2) with

µ1 ≤ · · · ≤ µk.

If B1 is positive definite, then it holds for j = 1, . . . , k that

λk−j+1 ≥ ν − 1
µj
.

� �
39 / 50



Principle of the proposed algorithm

We try to derive a verification algorithm which is

• fast (comparable with the cost for LDLT factorization)

• stable (applicable for cases κ(A) > 1010)

For this purpose,

• Find two approximate eigenvalues τ̃k, τ̃k+1 where the gap |τ̃k+1| − |τ̃k|
is sufficiently large.

• Use block LDLT factorizations and their a priori error estimates.

• Apply Lehmann bounds for τ̃j, j = 1, . . . , k.

40 / 50



�

je�

k

j je�

k+1

j

R

je�

1

j

0

Figure 4: Distribution of absolute values of eigenvalues.

α

τ̃p(k) |τ̃k+1|

R

0

ν1
β1

−α

τ̃p(1)

β2 ν2

at least n
(2)
−

eigenvalues k approximate eigenvalues
︷ ︸︸ ︷

at least n
(1)
+ eigenvalues

−|τ̃k+1|

γmin γmax

σσ

Figure 5: Distribution of eigenvalues around zero.

41 / 50



Rounding error analysis on block LDLT factorizations

Block LDLT factorization: PAPT = LDLT , where

D =


D1

D2
. . .

D`

 , L =


L11

L21 L22
... ... . . .
L`1 L`2 · · · L``



Each Di and Lii is a 1 × 1 or 2 × 2 block, with Lii being 1 or the 2 × 2
identity matrix, respectively. The rest of L is partitioned accordingly.

42 / 50



There are several methods with different pivoting strategies:

• Bunch–Parlett (1971)

• Bunch–Kaufman (1977)

• others

For the rounding error analysis, we need a backward error bound for the

solution of linear systems involving 2 × 2 pivots.

43 / 50



We assume that the 2×2 linear system Ey = f is solved successfully with

a computed solution ỹ satisfying

(E + ∆E)ỹ = f, |∆E| ≤ εc|E| (1)

for some constant εc > 0.

Under some conditions we can prove that the condition (1) is rigorously

satisfied with

εc =


4γ2 (GEPP)
1
6γ298 (the explicit inverse without scaling)
1
6γ556 (the explicit inverse with scaling)

where γm = mu/(1 −mu) [≈ mu for not so large m].

44 / 50



� �
Theorem 10. [Ogita-Rump] Let A = AT ∈ Fn×n. Let L = (lij),
D = (dij) and P be a computed block LDLT factors of A. Suppose

the condition (1) is satisfied for some constant εc > 0. For 1 ≤ i, j ≤ n

define

s(i, j) := |{k ∈ N : 1 ≤ k < min(i, j) and likdkkljk 6= 0}|

and denote

αij :=
{
γs(i,j)+1 if s(i, j) 6= 0
0 otherwise

.

Put ε2 = max{εc, α} where α = maxi,j αij for 1 ≤ i, j ≤ n. Then it

holds that

|PAPT − LDLT | ≤ ε2(P |A|PT + |L||D||L|T ).� �

45 / 50



Proposed algorithm

1. Find two approximate eigenvalues τ̃k, τ̃k+1 where the gap |τ̃k+1| −
|τ̃k| is sufficiently large.

2. Take α in (|τ̃k|, |τ̃k+1|).
3. Execute a block LDLT for P (A− αI)PT ≈ L1D1L

T
1 .

4. Compute β1 ≥ ‖L1D1L
T
1 − P (A− αI)PT‖2.

5. Check the inertia of D1.

6. Execute a block LDLT for P (A+ αI)PT ≈ L2D2L
T
2 .

7. Compute β2 ≥ ‖L2D2L
T
2 − P (A+ αI)PT‖2.

8. Check the inertia of D2.

9. Apply Lehmann bounds for τ̃j, j = 1, . . . , k.

β1, β2: computed by a priori error estimates

46 / 50



Numerical results (for reference)

We evaluate the performance of the proposed algorithm.

CPU: 2.66 GHz Intel Core 2 Duo, Memory: 8GB

We implement a hybrid algorithm:

Stage-1: Rump’s algorithm

Stage-2: Proposed algorithm

Example: Random sparse symmetric matrices having 5 clustered

eigenvalues in [1, 1.1] and n− 5 eigenvalues in [102, cnd] in magnitude.

|λ(A)| = {1, 1.025, 1.05, 1.075, 1.1, 102, . . . , cnd}

=⇒ κ(A) = cnd, symmetric and indefinite.

47 / 50



Example: random sparse, density = 5/n, min |λ(A)| = 1
Computing time (sec) and lower bound of the smallest magnitude

eigenvalue

n cond Stage-1 Stage-2 lower bound
----------------------------------------------
10,000 1e12 0.86 -- 0.916
10,000 1e13 failed 1.72 0.998
10,000 1e14 failed 1.41 0.974
20,000 1e15 failed failed --
20,000 1e12 1.80 -- 0.589
20,000 1e13 failed 5.40 0.999
20,000 1e14 failed 6.54 0.996
20,000 1e15 failed failed --

48 / 50



n cond Stage-1 Stage-2 lower bound
----------------------------------------------
50,000 1e12 8.03 -- 0.387
50,000 1e13 failed 74.89 0.999
50,000 1e14 failed 48.88 * 0.997
50,000 1e15 failed failed --
100,000 1e12 8.81 -- 0.426
100,000 1e13 failed 153.62 0.999
100,000 1e14 failed 485.85 * 0.999
100,000 1e15 failed failed --

49 / 50



Conclusions

• There exists efficient (practically useful) verification methods for sparse

matrices having special property.

• Verified numerical computation for general sparse linear systems is still

difficult.

• Nevertheless, (we) never ever give up!

Thanks for your kind attention!

50 / 50


