Lower and upper error bounds of approximate solutions of linear systems

Takeshi OGITA (CREST, JST/Waseda University)

joint work with Prof. Shin'ichi OISHI (Waseda University)

CIA'07, Sep. 9–15, 2007; Noszvaj, Hungary

Outline

Purpose Let us consider a linear system Ax = b where $A \in \mathbb{R}^{n \times n}$ and $b \in \mathbb{R}^n$. The purpose is

- ullet to verify the nonsingularity of A, and then
- ullet to verify the accuracy of an approximate solution \widetilde{x} of the linear system.

Why not compute $x^* = A^{-1}b$?

To solve large (e.g. 1 million unknowns) linear system Ax = b on computer, we have to use floating-point arithmetic in practice.

floating-point arithmetic \approx approximate computation

- \Longrightarrow We cannot compute the exact inverse A^{-1} of large A.
- → The approximation sometimes causes serious problems!
- ⇒ Let's see what happens... (on Matlab)

(Usual) verified computation

Notation: For $x = (x_1, \dots, x_n)^T \in \mathbb{R}^n$, $|x| = (|x_1|, \dots, |x_n|)^T$.

Given an approximate solution \tilde{x} of Ax = b, the usual verified computation gives an upper bound of the error or its norm:

$$|\widetilde{x} - A^{-1}b| \le \epsilon \in \mathbb{R}^n \quad \text{or} \quad \|\widetilde{x} - A^{-1}b\|_{\infty} \le \max_{1 \le i \le n} \epsilon_i = \epsilon \in \mathbb{R}$$

- \Longrightarrow At least, \widetilde{x}_i has correct digits (accuracy) corresponding to ϵ_i .
- \Longrightarrow However, ϵ_i may be overestimated (too pessimistic).
- → The quality of the verification is still not known!

Quality of the verification

How (and whether) can we know it?

Why compute both lower and upper error bounds

If both $\underline{\epsilon}$ and $\overline{\epsilon}$ s.t. $\underline{\epsilon} \leq |\widetilde{x} - A^{-1}b| \leq \overline{\epsilon}$ and $\overline{\epsilon} \approx \underline{\epsilon}$ are obtained, then the quality of the verification (evaluation) can be confirmed!

Question: Is it possible to obtain such $\underline{\epsilon}$ and $\overline{\epsilon}$ without much computational cost?

Answer: Yes. It is not so difficult! Let's see how to do it.

Nonsingularity of A and upper bound of $||A^{-1}||$

It needs some effort in terms of computational cost. For example,

• Let R be an approximate inverse of A. If ||I - RA|| < 1, then A is proved to be nonsingular and

$$||A^{-1}|| \le \frac{||R||}{1 - ||I - RA||}.$$

• computing a lower bound $\underline{\sigma}$ of the smallest singular value of A \Longrightarrow If $\underline{\sigma} > 0$, then $||A^{-1}||_2 \le 1/\underline{\sigma}$.

Fundamental theorem

Theorem 1. [Ogita et al., 2003] Let A be a real $n \times n$ matrix and b be a real n-vector. Let \widetilde{x} be an approximate solution of Ax = b and $r := b - A\widetilde{x}$. Let \widetilde{y} be an approximate solution of Ay = r. If A is nonsingular, then it holds for $p \in \{1, 2, \infty\}$ that

$$|A^{-1}b - \widetilde{x}| \le |\widetilde{y}| + ||A^{-1}||_p ||r - A\widetilde{y}||_p e,$$
 (1)

where $e:=(1,\ldots,1)^T\in\mathbb{R}^n$.

Tight enclosure of the solution

For an arbitrary $y \in \mathbb{R}^n$, we have

$$A^{-1}b - \widetilde{x} = A^{-1}b - (\widetilde{x} + y) + y.$$

It follows that

$$|y| - \epsilon_y \le |A^{-1}b - \widetilde{x}| \le |y| + \epsilon_y$$
 with $\epsilon_y := |A^{-1}b - (\widetilde{x} + y)|$.

Using this and Theorem 1, we have the following proposition.

Proposition 1. Let A, b, \widetilde{x} and r be as in Theorem 1. Let \widetilde{y} be an approximate solution of Ay = r. Assume that A is nonsingular and ρ satisfies $\|A^{-1}\|_p \leq \rho$ for any $p \in \{1, 2, \infty\}$. Then

$$\max(|\widetilde{y}| - \epsilon, \mathbf{o}) \le |A^{-1}b - \widetilde{x}| \le |\widetilde{y}| + \epsilon, \tag{2}$$

where $\epsilon := \rho ||r - A\widetilde{y}||_p e$ and $\mathbf{o} = (0, \dots, 0)^T \in \mathbb{R}^n$.

 \Longrightarrow If $|\widetilde{y}_i| \gg \epsilon_i$, the error bounds are very tight!

 \Longrightarrow Such $|\widetilde{y}|$ can be obtained by the iterative refinement method.

Lower and upper error bounds of approximate solutions of linear systems – 9 / 13

Iterative refinement and staggered correction

To obtain a tight enclosure of an approximate solution \tilde{x} of a linear system Ax = b, we introduce a so-called "staggered correction".

 \mathbb{F} : a set of floaing-point numbers

Using iterative refinements, we can obtain $\widetilde{x}+y$ with arbitrarily higher precision: For $R\approx A^{-1}$

$$y^{(\ell+1)} = R * (b - A(\widetilde{x} + y^{(\ell)})),$$

where $y^{(\ell)} = \sum_{k=1}^{M} y_k^{(\ell)}$ with $y_k^{(\ell)} \in \mathbb{F}^n$. \Longrightarrow The correction term y can be expressed by the sum of floating-point vectors.

This makes only sense for calculating the residual $b - A(\tilde{x} + y^{(\ell)})$ when an accurate dot product is available (Fortunately, we have it!).

[1] O., Rump, Oishi: *Accurate sum and dot product*, SIAM J. Sci. Comput., 26:6 (2005), 1955–1988.

[2] Rump, O., Oishi: *Accurate floating-point summation: Part I / Part II*, submitted for SISC.

On the other hand, to obtain tight error bounds, we need to compute

$$\epsilon_i = \rho \|r - A\widetilde{y}\|_p = \rho \|b - A(\widetilde{x} + \widetilde{y})\|_p.$$

This is compatible with the iterative refinements!

Numerical experiments

(Matlab demo)

Thanks!